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It is proved that, under fairly general conditions, the canonical Poincare-Chetayev equations are 

Hamiltonian equations in non-canonical variables. It is shown that systems of generalized Lagrange 

and Hamilton equations in redundant variables, of lower order than equations that contain 

undetermined multipliers, as well as the Euler-Lagrange equations in quasi-coordinates, are all special 

cases of the Poincark-Chetayev equations. Thus the theory of the latter extends at once to the types of 

systems just listed. The problem of using the Poincare-Chetayev equations in non-holonomic dynamics 

is discussed. 

Poincare’s remarkable idea [l] of representing the equations of motion of holonomic 
mechanical systems in terms of a certain transitive Lie group of infinitesimal transformations 
was extended by Chetayev [2-51 to the case of non-stationary constraints and dependent 
variables, when the transformation group is intransitive. Chetayev transformed Poincare’s 
equations to canonical form and developed a theory for their integration. 

One important and well-known way in which the modern theory of Hamiltonian systems 
generalizes the classical theory is to use non-canonical coordinates [6-81, in terms of which the 
equations of motion often become much simpler than the clumsy and inconvenient equations 
in canonical coordinates qi, pi; this is the case, e.g. for the motion of a free rigid body. In 
this sense the Poincare-Chetayev theory is extremely promising for the modern theory of 
Hamiltonian systems. 

l. Consider a holonomic mechanical system with k degrees of freedom, whose position in 
space at any time t is defined by the values of the variables x,, . . . , x, (n 3 k), called defining 
coordinates [5]. If n = k, the xi are independent Lagrangian coordinates; if n > k they are 
dependent or redundant coordinates of the system. 

Suppose that certain integrable differential constraints imposed upon the system have been 
parametrized in some way, so that the generalized velocities may be written in the form 

hi =Sf(t,x)r),+5i(1,X), rank(SI)=k(i=l,...,n; ~=l,...,k) (1.1) 

Throughout, the repeated-index summation convention will be used. 
The following closed system of infinitesimal linear operators exist [4,5] 

X0 =~+~i~, x*=s~~ (s = l,...,k,) (1.2) 
i i 

which define non-transitively acting transformations that steer the holonomic system from a 
position (xi) at time t to an actual infinitesimally close position (xi +&) at time t +dt by the 
transformation 
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df = (X&f + q,X,f)dt, f(r, x) E c’ 11.3j 

and to a virtual infinitesimally close position (xl +6x,) by the transformation 

f?f = w,x,.f 11.4, 

In the case n = k, when det({,“) f 0, the transformations (1.2) act transitively. 
The system of linear operators (1.2) is closed in the sense that its commutator satisfies the 

identity 

[Xi,Xj]f=XiXjf-XjXif=C~X,f (i,j,s=O,l,...,k) (1.5) 

where the structure coefficients c,; satisfy the conditions cl; = -cf,, ci, = 0 and may also be 
variable [S]: c,; = cz; (t, .t). If all ci = const, then system (1.2) is a Lie group of real displacements 
and the virtual displacement operators X, (s = 1, . . . , k) form a Lie subgroup of the group of 
real displacements. 

The parameters IJ, and w, of the real and virtual variables, introduced by Poincare [l], are 
related as follows: 

(1.6) 

Poincare, however, considered the case when all c;l, = 0. 

It is not hard to implement the parametrization (1.1) and construct a closed system of operators (1.2) if 

the holonomic constraints are given by some completely integrable system of Pfaffian equations [4, S] 

aj =aji(r,x)(tri =0 (i=l,...,n; j =k+l.....n) 
(1.7) 

To that end we have to choose k linear differential forms CO, = uJt, x)6x, (s= 1, . . . k), which are 
independent both with respect to one another and with respect to the forms (1.7), and then to solve the 

resulting system of equations for dx, 

5x, =~f(t.*)O, (i.s=l,.... n) 

For virtual displacements this yields expressions for the operators X, and the relation (1.4), provided 
conditions (1.7) are satisfied. For real displacements constrained by completely integrable equations 

lljdtraji(t,x)dri+aj(t,X)dr=O (i=l,...A j=k+l>...,n) (1.8) 

we proceed in exactly the same way, taking (1.8) together with the additional forms n,dt = a,,(~, x)&, 
(s=l, . . . . k) and dt; this yields expressions for the operators (1.2) and the relation (1.3). 

As the auxiliary forms wi and rhdt (i = 1, . , k) may be chosen fairly arbitrarily, one can give the 
parameters the most convenient kinematic sense and simplify system (1.2) to a Lie group with constant 
structure coefficients c$ 

Using Eqs (l.l), we can represent the kinetic energy of the system by a function I’([, x,, . . . 

40 $3 * * * 3 qk). Assuming that active forces admitting a force function U(t, x) are applied to 
the points of the system, as well as non-potential forces with projections F,, F,, F, on the 
stationary axes of a Cartesian system of coordinates xyz, we introduce the function L(f, x, 
q) = T(t, x, q) + U(t, x) and generalized non-potential forces 

Q,(r,x,T)) = C(.F"XiX+ F'Xiy+ F,XiZ) (i = ‘,**.*‘I 
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where the summation is carried out over all points of the system. 
We shall ~311 L(t, x, q) the generalized Lagrangian to distinguish it from the classical 

Lagrangian L(t, n, i), from which it is obtained by the substitution (1.1). 
Chetayev [S] derived PoincarC’s equations from the D’Alembert-Lagrange principle 

d aL aL aL 
- -=C~iq,-+C~i-+XiL+Qi (r,s,i,...,k) 
dt hi atls as 

(1.9) 

with which Eqs (1.1) must be combined in the general case. The combined system of equations 
of motion (1.9), (1.1) of order k+n contains the same number of unknowns x,, . . . , x,,, 

r)l,“‘, qk* 

Among the special cases of Eqs (1.9) are the equations formulated by Poincare [l] for the 
case n=k, Qi=O and 

a 
XO’~s COi s =o (i,s= l,...,k) 

as well as the Lagrange equations of the second kind. 
Both PoincarC and Chetayev, incidentally, assumed that the structure coefficients were 

constants: c; = const, in which case the system of operators (1.2) is a Lie group G. If in addition 
Qi=O for all i and X,L=O (c-x=0, 1,. . . , k), then the Lagrangian will depend only on the 
parameters qa, which may be considered as coordinates in the Lie algebra g of G; in that case 
PoincarC’s equations (1.9) will be a closed system of differential equations in algebra g [8,9]. 

Chetayev [5] pointed out, however, that PoincarC’s equations are also meaningful when the 
coefficients ci are allowed to vary: c,;(t, x). We shall in fact consider this more general case. 

If 

x0 =aiat, c& =O, aL/&=O, Q,q=O 

r + . . , k), satisfies the 

1°[x,,xiJ=o, CL (a,s=O.l,..., k); (1.11) 

If displacements exist, (1.9) have integrals 

auhi =const (i=r+l,...,k) 

By (1.12), parameters T&+~, . . qk may expressed as of t, ql, . . , br+l, . . , and 
one form a Routh function 

the equalities 

X,R=O, aR/h, aRlab, =-qa a=r+l,...,k) 

we can write Eqs (1.9) for non-cyclic displacements as generalized Routh equations 
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d aR 
- -z&q, 

aR 

dr hi 
x + CLtlabj +C& .*+c&b,+X,R 

h, 
(i,a.s=l,..., r; j=r+l, . . . . k) (1.14) 

after integration of which the quantities q, are determined by the relations 

qa =-&lab, (a=r+l,....k) 

Elementary integrals like (1.12) were first given by Chaplygin [lo] (see also [12]). 

To transform PoincarC’s equation to canonical form, Chetayev replaced the variables q, by 
new variables 

y; =aw3qi (i=l,...,k) (1.16j 

and constructed a generalized Hamiltonian 

It is not difficult to prove that 

x,H=-X,L, qi =aH/$yi (i=l,...,k) 

using which, together with (1.16), one can reduce Poincare’s equations (1.9) to the canonical 
PoincarC-Chetayev equations 

%=cS.~y +c;.y -X.H+Qi, q.=c 
dt n aY, 3 I s ’ ’ aYi 

(i,r,s=l,..., k) 

The second group of the canonical equations (1.18) may be given another form 

(j=l,..., n; r=l,..., k) 

(1.18) 

(1.19) 

The combined system of differential equations of motion (1.18) and (1.19) is of order k+n 
in the same unknowns y,, . . . , y,, x,, . . . , x,. 

If the quantities c:,, cl,, Q, and H do not depend on the coordinates x,, the differential 
equations (1.18) form a closed system. 

A special case of (1.18) is that of the canonical Hamilton equations when the variables x, 
(i=l,..., k=n) are independent and the group (1.2) reduces to a permutation group; the 
parameters of the real Pisplacements are the Lagrangian generalized velocities y, = .$, so that 
the variables xi, y, = aL I &i, are the canonical coordinates. 

The generalized Jacobi theorem [2-51 holds for the canonical Poincar&Chetayev equations: 
if one knows a complete integral 

v(t,x ,,..., x=, a ,,..., a,)+a,+,, ~ta2v~axiaa,~i~o. Uj =const (1.20) 

of the first-order partial differential equation 

X,V+H(t,x, ,..., x,, X,V ,..., X,V)=O (1.21) 

then the solution of Eqs (1.18) and (1.19) is determined by the set of all their integrals 

av 1 aaj =bj-const, Y,=X,V (j=l,..., n; a=1 ,..., k) (1.22) 
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At first sight, the first group of integrals (1.22) yields a general solution of system (1.18), and (1.19) that 

depends on the 2n arbitrary constants a,, b,, while the order of the system is k+n. In reality, however, 

the solution will depend on only k+n constants. In fact, since the constraints imposed on the system are 
represented by the completely integrable system of Pfaffian equations (1.8), the system may be reduced to 
theform d@,=O (j=k+l,..., n). By (1.3), these equalities imply the relations 

X,cDj -0 (a=O.l,..., k; j=t+l,..., n) 

in view of which we can add terms cj@, with arbitrary c, =const to the complete integral (1.20) of Eq. 
(1.21). Consequently, of the )t essential constants a,, not one of which is additive, n-k will be the 

coefficients c~,~, . . . , c,, so that the complete integral (1.20) will have the following structure 

V= W(r.xl,....x,.a,,....a~)+ajcpj +a*l* 
aw,w....,x,w f o 

%a *....dQ) 

It follows from (1.23) that the integrals (1.22) may be written 

av aw b &r&z,. y -=-= o1, 
ha hz a(l, J J’ 

a =X,V=X,W (a=1 ,..., t; j=R+l,..., n) 

(1.a 

(1.W 

The second group of integrals (1.24) relates to the determination of the constants f+ of the holonomic 

constraints, and when these are added to the first group of integrals (1.24) the solution is uniquely 
defined: xi = xr (t, a,, . . . , a,, b,, . . . , 4, bk+l, . . . , b,), while the third group in (1.24) defines the 
variables y, (a = 1, . . . , k). 

2 We shall show that, under quite general conditions, the canonical Poincare-Chetayev 
equations are Hamiltonian equations in non-canonical variables. Equations of this kind, which 
are frequently more convenient than Hamiltonian equations in canonical coordinates, are 
studied in the modern theory of Hamiltonian systems [6-8]. 

We shall assume throughout that Qi =0 in Eqs (1.18), and c,(r, x)=0 (i=l, . , . , n) in 
Eqs (1.1). Then X,,=iW&, c&=0 (a, s=l,. .., k). 

Define the generalized Poisson bracket of smooth functions flf, n, y) and cp(t, x, y) by 

(f.cp) * =ayX”f -afx q+c”.df *ys (i,a,s=l,...* k) 
a *a a “aYi *a 

(2.1) 

In the special case of canonical variables xi, yi = ailaii (i = 1, . . . , k = n), when system (1.2) 
reduces to a permutation group, formula (2.1) reduces to the classical Poisson bracket 

(f cp) af acp af a (i=l,...,k) =- - 
aXj ari ar, axi 

(2.2) 

this being the reason for the choice of sign in (2.1); Chetayev [2-4] defined generalized Poisson 
brackets with the opposite sign on the right of (2.1). Using (2.2), we can write the canonical 
Hamilton equations, as is well known, in the form 

~j =(Xj,H), ~j =(yj,H)*~j =5, pi =-~ (i=l,...,k) (2.3) 
i i 

where H(t,x,, yi) is the classical Hamiltonian function. 
It can be seen that the generalized Poisson bracket has the same properties as the classical 

Poisson bracket, namely 
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1. they are skew-symmetric: (f, (p) = -(<p, j) 
2. they are bilinear: v, A1w + h,cp,) = h,(f, cpl) + h,(f, cp,)(h, E R) 
3. they satisfy the Jacobi identity: (cf, cp), v) +((cp, w), f) + ((w, fi, 9) = 0 
4. they obey Leibniz’s rule: (f,f2, 9) = f,(f2, cp)+ &.(A, (p). 
Let us assume that fll, x, y)= const is a first integral of the canonical equations (1.18) and 

(1.19). Then, using definition (2.1) we have the identity 

(2.4) 

The following generalization of Poisson’s theorem 12-41 is true: If cp(r, x, y) = a and v(t, x, 
y) = b are the first two integrals of Eqs (1.18) arid (1.19), then (cp, w) = c will be the third first 
integral of those equations. 

We will now prove that the canonical PoincarbChetayev equations (1.18) and (1.19) may be 
expressed in the form 

where li(t,x, y) is the generalized HamiIto~an function (1.17). 
Indeed, by definition (2.1) 

(Yi*H) aYa a t 2Ex y +i S ayi a~ s aH .-ayXaHfc”j- -y$=-XiH+cq-ys a 
ayi +b. a 

ax. ax. i3H 
(xj,H~=~Xa~i-~XaH+cb~ ayy” =~Xax, 

a a i a 01 

65) 

since X,y, = 0, ayi I $v, = 6,, ax,/ay, = 0 by virtue of the fact that the variables x, are 
independent of y, (i, a=&. . . , k, j=l, . . ‘, n) and vice versa, and that the variables y, are 
also independent; 6, is the Kronecker delta. 

comparing the right-hand sides of Eqs (1.18) and (1.19) with formulae (2.6) we confirm the 
correctness of (2.5). This implies that the canonical Poincare-Chetayev equations are 
Hamiltonian equations in non-canonical variables for which, consequently, the results of [Z-5] 
are applicable. 

Em&e 2.1. We wili develop the Poincare-Chetayev equations of motion for a heavy rigid body 

with one fixed point, for which the kinetic and potential energies are respectively ?‘=1/2A,o: and 

V = M&yi, where w, are the projections of the angular velocity, y, are the cosines of the angles between 

the vertical and the principal axes of inertia, and xf are the coordinates of the centre of mass. 

As the defining coordinates X, and parameters of the real displacements rti we take y, and CO,, 
respectively (i = 1, 2,3), where yi satisfy the Poisson’s equations 

41 ldt=w3y2 -a2-r3 (1 2 3) 

Let f(rt, yz, y3) be a function whose derivative is 

Hence we obtain expressions for the operators (1.2) 
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Xlf =Y, -_& 3f (1 2 3) 
duz dy3 

whose commutator is 
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(2.7) 

fX,.X,l=X,f (1 2 3) (2.8) 

Consequently, the non-vanishing structure constants will be cfr = I& = cir = 1, c$ = c& = ct, = -1. 

Poincare’s equations (1.9) reduce to Euler’s equations 

A,da+ I dl = (A* - A, )o.‘*(o, + Mg(*;yr -x,07,) (1 2 3) (2.9) 

to which we must add Poisson’s equations. 
We replace o, by the variables y, =aT/&c, and consider the function H = yt /(2A,)+Mg$‘7,. The 

Poincare-Chetayev equations (1.18) and (1.19) take the form of Hamiltonian equations 

4&= *z-4 

dt 
Y2Y3 + w472 - 47,). (1 2 3) 

44 

(2.10) 

if we note that the right-hand sides of these equations are Poisson brackets 

(y,,W=-X,H+c:, EY,, (7,JO 
&I 

=%x,7, (1 2 3) 
ay, 

(2.11) 

We note, among other things, that the representation (2.1) of the Poisson bracket for the functions F and 
H of the variables y, and 7, is more compact compared than its representation as a sum of vector-scalar 
products [12] of three vectors 

-y.(VYFxV,H)-7+‘,FxVYH+VyFxV,H) 

where the symbols V, and V, denote the gradients with respect to y and 7, and F is successively equated 

to the projections y, and yi respectively. 

3, We will now derive the generalized Lagrange and Hamilton equations in term of depen- 
dent coordinates. 

Suppose that the constraints are represented by differential equations 

ii = bill (r, .K>& + bj (r, X) (3.1) 

which constitute a completely integrable Pfaffian system. Here and throughout this section, 01, 
i=l,..., k; j=k+l, . . ..n. 

The virtual displacements are defined by the equations 

~j = bia6iar (3.2) 

As parameters of the real and virtual displacements we take [5] n, = 4 and o, =6x, 
respectively. Using (3.1), we find expressions for the operators of the group (1.2) 

Xof Xaf (3.3) 

whose commutator vanishes because Eqs (3.1) and (3.2) are integrable. Consequently, all 
the structure constants of the group (3.3) vanish: c& = O(K, b, s =0, 1, . , . , k), i.e. the 
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operators (3.3) form an Abelian group. Poincare’s equations (1.9) in that case become 

d ar, 
- --X,L=e, 
dt ha 

or, in view of (3.3) 

(L=L(t,x, (...,_ X”,i ,‘..., Xk) (3.4) 

Equations (3.4) and (3.1), taken together, form a system of differential equations of order 
IZ + k in the same number of unknowns x1, . . . , i,,, il, . . . , &. 

Equations (3.4) are generalized Lagrange equations in the dependent (redundant) coordin- 
ates; these equations do not involve the reactions to the constraints. They are more convenient 
than the Lagrange equations with undetermined multipliers hi 

A I A . 

i_ dL_dL=~,-b,;h~, $ -$-$=Qj+kj (3.5) 
dr &ii axi 

i=i(t,x ,,... ,x,. &....,x,,) 
J J 

whose order is 2n > IZ+ k, considered together with equations (3.1), which are of order k. It 
is true that Eqs (3.5) and (3.1) enable one to determine not only x,, . . . , x, but also h, 
(j=k+l,..., n), and together with them the reactions of the constraints (3.1); but for large n 
they are not very tractable. 

It can be shown, however, that the elimination of h, from Eqs (3.5) and the use of (3.1) lead 
to Eqs (3.4); we shall not go into details. 

If we replace the parameters I& = jc, by the variables y, = i3Ll ha and form the function H(f , 
x,, . * * , x,, y,, . * . 3 yk) = y,_i, - L (summation over the repeated index 01 from 1 to k), then 
Eqs (3.4) transform to the canonical Poincare-Chetayev equations (1.18) 

-=-aH_b. 4% ak aH+Q, --cL=aH 
dt ax, p axj dt &a 

(3.6) 

which are generalized Hamilton equations in the dependent coordinates. Together with these 
equations we must consider Eqs (3.1), rewritten as 

dxj -= b. =+b 
dt p aya j 

(3.7) 

thus obtaining a combined system of differential equations of order n + k in the same number 
of unknowns x,, . . . , x,, y,, . . . , y,. 

Thus, the generalized Lagrange and Hamilton equations in redundant coordinates are 
special cases of the Poincare-Chetayev equations. 

It is interesting to compare Suslov’s theorem [13, chap. XL1111 with the generalized Jacobi 
theorem. Suslov considered the Hamilton equations with multipliers conjugate to Eqs (3.5), 
and instead of (1.21) he obtained the following partial differential equation [13, formula 
(43.25)] 

%&+H 
t 

t,x I,..., x,, a” a” =o 

1 at 
-,...,- 

at ax, ax, I (3.8) 
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where &(r, n) = cj are the integrated equations of the constraints (3.1), Aj = - jh,dt are impulse 
factors; he proved that if one knows a compete integral of equation (3.8), then the equations 

av b av 

-= s’ 3% 
ari 

8% 
--‘P,+hjax (s=l,...,n) 

S 

are integrals of the Hamilton equations conjugate to Eqs (3.5). Proposing to eliminate the 
impulse factors with the help of the differentiated equations of the constraints, Suslov then 
obtained an equation of the form (1.21), taking into account (3.3), and integrals (1.22), just as 
the elimination of hj from Eqs (3.5) led to Eqs (3.4). 

Example 3.1. Let us consider Suslov’s Example 134 in his notation [13]: two heavy particles of masses 

m, and m, with coordinates yl, z, and y,, tz respectively, are moving in the yz plane, subject to the 

constraints 

m*k +nr*jz = 0, (a -y2Mjj -j2)+(z1-22)(4 -i2) =o (M=ml +m2) 

The position of the system is determined by the coordinates y,, z, of the centre of mass and by the 

quantities q= y, - y, and cp = arct8[(z1 - zz)l(y, - y2)], in terms of which the integrated equations of the 
constraints become 

Yc = c, =l2onst, qsc!ccp=c2 =const 

If we take the quantities i, and@ as the parameters of the real displacements, the operators (1.2) will 

be 

x, =$, X, =$, 
E 

and Eq. (1.21) will be 

I( 1 
2 

av+l 1 av 

at 2Mc 

+M 3f_qtg$!)‘]+Mgzc =O 

mlm2 

which is identical with an equation of the type (3.8) after the impulse factors of the constraints are 

eliminated [13, p. 4711. 

4. Let us consider the equations of motion of holonomic systems in quasi-coordinates, which 
have been attracting attention in the literature for many years (e.g. [14-171). We will show that 
these equations are a special case of the Poincar&Chetayev equations. 

Let xjand ii (i=l, . . . . k) be the independent Lagrangian coordinates and velocities of a 
holonomic systkm, 
the quasi-velocities 

Then [16] 

t = x0 the time, and &, =-1. As parameters of the real displacements we take 
TJ,, which are related to xi through the non-integrable equations 

71, = asi(x (s,i = O,l,..., k), det(asi) # 0 (4.1) 

pi = 4 (X)rls (4.2) 

where TJ, = 1, a, = b, = 6,, bi,, = -b,a,,, a,/~, = u,b, = 6, (i, I+, s = 0, 1, . . . , k). 
We now introduce the differentials of the quasi-coordinates 
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in terms of which the differentials of the coordinates n, may be written in the form 

(4.3) 

akj = b&c, @E, = dt) (4-4) 

We introduce ad hoc notation for the derivatives of a function j(x) E C’ with respect to the 
quasi-coordinates 

using which, together with the parametrization (4.2), we cons~uct operators 

XJ =$ =b,z$ (I”,8 =O,l,...,k) 
s 7 

with commutator 

where the structure coefficients are 

(a,i,j,r,s=O,l,...,k) 

ft is obvious that the infinitesimal operators (4.6) form a closed system. ~onsequ~~t~y, 

(4.5) 

(4.6) 

(4.7) 

Puincare’s equations retain the form (1.9) even in terms of quasi-coordinates, if one takes (4.6) 
and (4.8) into account 

Combining Eqs (4.9) with the kinematic relations (4.2), we obtain a system of 2k first-order 
ordinary differential equations, each in the same number of unknowns IJ~, . . . , qk, 4, . . . , x,. 

~~tr~ucing the three-index Bohzrnann symbuls 

we conclude that, by (433, the Euler-Lagrange equations (8.1.5) of 1161 in quasi-coordinates 
are identicai with Eqs (4.9) when & =Q,. Thus, the Euler-Lagrange equations are a special 
case of Poincare’s equations, when the quasi-vehxities (4.1) are taken as the parameters q, of 
the real displacements. 

On changing from the variables qi to the variables y, = &!J~i (i = 1, . . . , k) the equations of 
motion (4.9) take the form of the ~ojn~r~-~hetayev equations (1.18), i.e. 

(a,i,s = l,...,k) (4.10) 
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which are the canonical form of the Euler-Lagrange equations. Together with Eqs (4.10) we 
must consider Eqs (4.2), rewritten in the form 

.ti =b,aH/ay, (i,s=O,l,..., k) (4.11) 

Thus, we obtain a system of 2k differential equations in 2k unknowns y,, . . . , y,, xl, . . . , x, 
(Eq. (4.11) for i = 0 reduces to the identity 1 = 1, since k = b,-,, = q,, = aHlay,, = 1). 

Clearly, the theory of the Poincare-Chetayev equations is also applicable to the Euler- 
Lagrange equations in quasi-coordinates. 

Example 4.1. For a heavy rigid body with one fixed point (Example 2.1), the Lagrangian coordinates xi 
and quasi-velocities q, will be the Euler angles x1 = 8, x, = w, x3 = cp and the projections oi (i = 1, 2,3) of 
the angular velocity on the principal axes of inertia, so that the kinetic and potential energies become 

T=xA#o;. V = Mg(xp sinBsincp+x~sinBcostp+xs co&) 

Using relations of the type (4.2) 

b=qcoscp-02sincp, rir=(W,sincp+wzcoscp)/(sine), cb=03-Ctge(~,sincp+02coscp) (4.12) 

we construct the operators of a transitive Lie group 

?f since ?f x,f++os@_+_ af 
--ctgetincp- 

1 , iK3 sine hy * 

(4.13) 

with commutator (2.8). The non-vanishing structure constants are c,i = c& = ci, = 1, c,‘, = c& = c$ = -1, as in 
Example 2.1. 

The Poincare equations have the form of (2.9), on the right-hand side of which y, must be replaced by 

Yi 
=sinesincp, y2 =sinecoscp. Y3 =cose (4.14) 

Equations (2.9) are completed by adding Eqs (4.12). 
The canonical Poincare-Chetayev equations have the form of the first group of equations (2.10), taking 

into account (4.13) and Eqs (4.12) with oi in the latter replaced by y,/A, (i = 1, 2, 3) where these 

equations take the form of Hamilton equations 

5. In conclusion, we will briefly consider the application of the Poincare-Chetayev equations 
to non-holonomic dynamics. This question was previously considered in [9, 18, 191, but the 
results of Section 4 provide a new approach. 

The Euler-Lagrange equations in quasi-coordinates combine the equations of motion for 
both holonomic and non-holonomic equations [14-171. Consequently, the same is true of the 
Poincare-Chetayev equations. Indeed, retaining the notation of Section 4, let us assume that 
the system under consideration is subject to non-integrable constraints of the form 
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qSsaa,,x,=O, asr=US,(xj), rank(a,,)=k-m (T,j=O,l,..., k; s=m+l,..., k) is.11 

~‘(1 Eqs (5.1) we add arbitrary linear forms 

?j = airXrt uir = a,(~,) (i = l,...,m) (5.2) 

but such that det(a,,) f 0 (I’. s = 0, 1, . . , k) in particular, the quantities 11, (i -= 1. , . . m) may 
be generalized velocities .i-,. Adding IJ, = 1 to the relations (5.1) and (5.2) and solving for k 
(r=O, l,.... k) we obtain (4.2). 

Virtual variations of the quasi-coordinates 7c, = TJ,& are determined by equalities II-, = w? - 
u,,sx, (r = 1, . . . , k), where, by Eqs (5.1), we have constraints &tJ = 0 (S = IYE+ 1. . . k). Using 
the D’Alembert-Lagrange principle, we conclude that, unlike the results of Section 4. if we are 
considering a non-holonomic system of m PoincarC equations of the form (4.9) 

r aL aL -_,+c,,Ilr+~+Qi (i,a=l,..., m; r=L...,k) (5.3) 

The structure coefficients c,: are also determined by (4.8). but with the indices i, j varying from 
Otom. 

Equations (5.3), together with the constraint equations (5.1) and the relations (5.2). form a 
system of k +m equations of motion of a non-holonomic system in quasi-coordinates with the 
same number of unknowns x,, . . . , x,. q,. . . , q,. It should be stressed that the generalized 
Lagrangian L(t, s,, . . . , x,, ql, . . . , qk) appearing in (5.3) may depend on all k quasi- 
velocities qr, and it is necessary to use the constraint equations (5.1). TJ, = 0 (s = m+ 1. . . k). 
only after setting up Eqs (5.3) [16, 171. 

Note that, by the method described in 151 to determine the reactions to constraints. the 
remaining k-m equations (4.9). with the terms O,,ZZ, added to their right-hand sides. enable us 
lo find the reactions R, to the constraints (5.1). If we free the system from the constraints (5.1). 
replacing their effects by the reactions R, (i = 1. . . . , k), the result will be a holonomic system. 
to which equations of type (4.9) are applicable. Since the constraints are assumed to be ideal. 
the work done by their reactions in virtual displacements will vanish 

RiSx, = R,b,ht, =0 (i=l,..., k; j=l,..., m) 

Hence, since BK, is arbitrary, it follows [9] that Rib,, = 0 (_j = 1, . . , m) which implies that the 
first m equations of motion of Ihe “freed” system are Eqs (5.3), and the remaining k -m 
equations 

d aL --= dt a-rs x+Qs+bisRit (s=m+l,...,k) (5.4) 

in view of (5.1), enable us to determine the reactions l?,, provided that rank(b,,T) # 0. 
Note that if Q, = 0 Eqs (5.3) are equivalent to Eqs (3.14) of [18] and (1.13) of [ 191, but they 

are slightly simpler thanks to the choice of the quasi-velocities q,, which vanish because of the 
equations of the non-holonomic constraints (5.1). Let us replace the kinetic energy T(r, .Y, 

r\,,..., TJ,J of the holonomic system, occurring in the function t(r, x, 7) in Eqs (5.3), by the 
kinetic energy 0(t. s, q,, . . , q,,) of the non-holonomic system with constraints (5.1). 
Obviously 

e(t,x,q,,..., Tj,)=T(t,x,T\ 1’“. ,llrn~O,...,W 

Consequently. if 11, = 0 (s = m+ 1, . . . , k). then 
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aL ae aL a(e+u) aL aT 
-=-* -= -=- l I pi hi hi hi ’ a, hr ‘Is=0 

, (i = l,..., m; r=m+l,...,k) 

and Eqs (5.3) become 

(a,i,s=l,..., m; r=m+l,..., k) 

as in the case of Eqs (1.13) of [19]. Here (X/&l,),=, denote the expressions 3Tl&~ when 
lj,=o (r, s=m+l, . ..) k). 

In the special case in which the parameters q, of (5.2) are the generalized velocities S, = rti 
(i=l, . . . . m), i.e. when a, = &(i, Y = 1, . . . , m)? all the structure coefficients vanish: CL = 0 for 
r =S m [14], and equations (5.3) become 

d dL - -=g.X aL r aL aL 
dtaii ““al-j, 

-+COiz+F+Qi 

(i,a = l...., m; r=m+l,...,k; L= L(t,x,,...,x,, XI,...,Xm9 rl,,,+l,..-,tlk)) 

(5.6) 

If we replace the parameters 1, by variables y, = Z/&l, (i = 1, . . . , k), the equations of 
motion (5.3) of the non-holonomic system take the form of the canonical Poincare-Chetayev 
equations 

!%=cs,*y +c,$y _%+Q. 
dt O” ay, ’ IS hi ’ (5.7) 

qi =aH/ay, (La=1 ,..., m; r=l,..., k) 

to which we must add the constraint equations (5.1) and relations (4.2) rewritten in the form 

aH 
-=O (s=m+l,..., k), ii=btig, 

ay, 
(i=l,..., k, j=O,l,..., m) (5.8) 

YJ 

Equations (5.7) and (5.8) form a system of 2k+m equations in the same number of 
unknowns _r,, . . . , x,, y,, . . . , y,, ql, . . . , q,, [17]. 

Example 5.1. Working from Eqs (5.6), let us derive the equations of motion in Voronets’ form [ZO] for 
a system with Lagrangian coordinates x,, . . . , x, and non-integrable constraints 

is =a,(r,~)i~+a,(t,x), (i=l,..., m; s=m+l,..., n) (5.9) 

Set qi=Xi, n,=r,&=l, T),=X,-a,,& arO=ar (i=O, 1, . . . , m; s=m+l, . . . ,a), so that i,=q,, 

X, = ql, + a,iqi and, in view of (4.1), (4.2), we have the relations 

aii =bti =6,, a, =bl =O. bti = -asi = asi. as, = bs, = 6,r 

(i.j=O.l,..., m; s,r=m+l, 4) 

according to which, by formulae (4.8) 
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au. 3~. aa. c;,. = n - J + 
aa 

Lakj -La, 
aXj ax, ax, ax, 

aa. a0. 3~. aa, c& =a_-L+n, 
at axi axk k-qaki 

(i,j= 1 , . . . . m; k, r = m + 1. . . . . n) 

Noting (5.9) and (5.10), we conclude that Eqs (5.6) now take the form of Voronets’ equations 1201 

d a0 a(e+u) --= ace+u) 
dt aii T+a”’ -+(c~iXj +c~i) 

ax, 
+Qi 

(5.10) 

i5.ill 

(i. j = 1, .,., m; r=m+ I....,n) 

Equations (5.11) and (5.9) combined form a system of II differential equations, whose general solution 

depends on tl+ rn arbitrary constants. 

In the special case in which the function I,([, x . i,. q,,z,,. , q,), the forces Q, and also the 

coefficients of the constraints (5.9) do not depend explicitly on the coordinates X, (1. = 1~ -t 1. , II ). Eqs 
(5.11) are identical with the closed system of ITI Chaplygin equations [17] in the unknowns I,. -Y,,,. 

I wish to thank L. M. Markhashov for useful comments. 
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